Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus.

Identifieur interne : 001D68 ( Main/Exploration ); précédent : 001D67; suivant : 001D69

Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus.

Auteurs : Glenn T. Howe [États-Unis] ; David P. Horvath [États-Unis] ; Palitha Dharmawardhana [États-Unis] ; Henry D. Priest [États-Unis] ; Todd C. Mockler [États-Unis] ; Steven H. Strauss [États-Unis]

Source :

RBID : pubmed:26734012

Abstract

To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with gibberellins, abscisic acid, and cytokinin. We identified 315 upstream sequence motifs associated with eight patterns of gene expression, including novel motifs and motifs associated with the circadian clock and responses to photoperiod, cold, dehydration, and ABA. Analogies between flowering and endodormancy suggest important roles for genes similar to SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL), DORMANCY ASSOCIATED MADS-BOX (DAM), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1).

DOI: 10.3389/fpls.2015.00989
PubMed: 26734012
PubMed Central: PMC4681841


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus.</title>
<author>
<name sortKey="Howe, Glenn T" sort="Howe, Glenn T" uniqKey="Howe G" first="Glenn T" last="Howe">Glenn T. Howe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horvath, David P" sort="Horvath, David P" uniqKey="Horvath D" first="David P" last="Horvath">David P. Horvath</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service Fargo, ND, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA; Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA; Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Priest, Henry D" sort="Priest, Henry D" uniqKey="Priest H" first="Henry D" last="Priest">Henry D. Priest</name>
<affiliation wicri:level="2">
<nlm:affiliation>Donald Danforth Plant Science CenterSaint Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in Saint LouisSaint Louis, MO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Donald Danforth Plant Science CenterSaint Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in Saint LouisSaint Louis, MO</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA; Donald Danforth Plant Science CenterSaint Louis, MO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA; Donald Danforth Plant Science CenterSaint Louis, MO</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26734012</idno>
<idno type="pmid">26734012</idno>
<idno type="doi">10.3389/fpls.2015.00989</idno>
<idno type="pmc">PMC4681841</idno>
<idno type="wicri:Area/Main/Corpus">001976</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001976</idno>
<idno type="wicri:Area/Main/Curation">001976</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001976</idno>
<idno type="wicri:Area/Main/Exploration">001976</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus.</title>
<author>
<name sortKey="Howe, Glenn T" sort="Howe, Glenn T" uniqKey="Howe G" first="Glenn T" last="Howe">Glenn T. Howe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horvath, David P" sort="Horvath, David P" uniqKey="Horvath D" first="David P" last="Horvath">David P. Horvath</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service Fargo, ND, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service Fargo, ND</wicri:regionArea>
<placeName>
<region type="state">Dakota du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA; Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA; Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Priest, Henry D" sort="Priest, Henry D" uniqKey="Priest H" first="Henry D" last="Priest">Henry D. Priest</name>
<affiliation wicri:level="2">
<nlm:affiliation>Donald Danforth Plant Science CenterSaint Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in Saint LouisSaint Louis, MO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Donald Danforth Plant Science CenterSaint Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in Saint LouisSaint Louis, MO</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA; Donald Danforth Plant Science CenterSaint Louis, MO, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA; Donald Danforth Plant Science CenterSaint Louis, MO</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with gibberellins, abscisic acid, and cytokinin. We identified 315 upstream sequence motifs associated with eight patterns of gene expression, including novel motifs and motifs associated with the circadian clock and responses to photoperiod, cold, dehydration, and ABA. Analogies between flowering and endodormancy suggest important roles for genes similar to SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL), DORMANCY ASSOCIATED MADS-BOX (DAM), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">26734012</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>989</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2015.00989</ELocationID>
<Abstract>
<AbstractText>To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with gibberellins, abscisic acid, and cytokinin. We identified 315 upstream sequence motifs associated with eight patterns of gene expression, including novel motifs and motifs associated with the circadian clock and responses to photoperiod, cold, dehydration, and ABA. Analogies between flowering and endodormancy suggest important roles for genes similar to SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL), DORMANCY ASSOCIATED MADS-BOX (DAM), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Howe</LastName>
<ForeName>Glenn T</ForeName>
<Initials>GT</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horvath</LastName>
<ForeName>David P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service Fargo, ND, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dharmawardhana</LastName>
<ForeName>Palitha</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, USA; Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Priest</LastName>
<ForeName>Henry D</ForeName>
<Initials>HD</Initials>
<AffiliationInfo>
<Affiliation>Donald Danforth Plant Science CenterSaint Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in Saint LouisSaint Louis, MO, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mockler</LastName>
<ForeName>Todd C</ForeName>
<Initials>TC</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA; Donald Danforth Plant Science CenterSaint Louis, MO, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">QTL</Keyword>
<Keyword MajorTopicYN="N">chromatin</Keyword>
<Keyword MajorTopicYN="N">ecodormancy</Keyword>
<Keyword MajorTopicYN="N">endodormancy</Keyword>
<Keyword MajorTopicYN="N">gene expression</Keyword>
<Keyword MajorTopicYN="N">paradormancy</Keyword>
<Keyword MajorTopicYN="N">phytohormone</Keyword>
<Keyword MajorTopicYN="N">transcription factor</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26734012</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2015.00989</ArticleId>
<ArticleId IdType="pmc">PMC4681841</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2014 Nov 18;14:309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25403461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Pathol. 2005 Aug;58(8):826-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16049284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3430-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jun;228(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18324412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2014 Jun;15(6):394-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24805120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 May;7(5):764-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24658416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Oct;60(2):328-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19566593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Dec;130(24):6001-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Apr;19(4):240-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24373845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Mar;66(5):1527-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25560179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20135197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):524-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Oct;21(10):3185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2014 Feb 1;321(1):40-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009 Jun 03;9:126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19493348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):59-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Jan;5(1):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21948524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Mar;87(5):1663-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1689846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jul;61(12):3345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):485-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Mar 18;406(3):414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21329671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 20;9(1):e86217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24465967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(14):4023-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24659488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Nov;109(8):1648-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15490107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 May;46(4):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Jul 30;586(16):2332-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22659182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):130-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):897-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Jan 17;13:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22251412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Dec;65(22):6629-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25249073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Jan;1829(1):105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22982195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):119-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Oct;83(3):247-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23756818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jul;43(4):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11052200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Apr;82(2):193-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25736223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3835-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19651683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Mar 10;12:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21392393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Feb;122(2):403-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 20;449(7160):356-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17704763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 2007;72:353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16831-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Jul;31(7):1199-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Feb;7(2):173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 23;110(4):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(2):195-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Feb;239(2):255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(13):4231-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20338883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2014 Oct 6;11(99):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25142519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(3):e1002512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22457632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D559-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22102568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol Report. 2013;31:87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24415840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Aug 30;14:593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24001316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(1):e1003244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2011 May;107(7):1203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21504914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 Jul 14;30(1):36-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24981610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Apr;42(7):4332-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24497194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2734-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15333755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jun;136(2):223-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1294-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D1182-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24174544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Apr;7(4):e1002055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21552333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):143-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20229130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(2):225-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18212027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Dec 26;9(12):e116002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25542021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):10001-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24951507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Nov;192(3):626-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21819406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jun;74(6):905-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23496207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Mar 31;24(7):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24656832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 May;233(5):971-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21274560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(2):511-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23815789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D298-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 May;70(4):549-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22268548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Jun;64(9):2629-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23709674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Nov;165(3):1489-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Nov;71(4-5):403-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19653104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20530613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jan;193(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):571-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2013 Nov;12(11):890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23994068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(5):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Feb 09;10:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20066557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 May;61(9):2247-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20413527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jun 03;4:167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23761798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):418-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22452853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Feb 16;30(4):731-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21240189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20213333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2015 Jun;31(6):300-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26003219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Sep 3;12(17):1529-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12225670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):207-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20340040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 19;10:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20642851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 26;10(6):e0129016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26114291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2736-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1191-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2010 Dec;26(12):519-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 May;31(5):472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):948-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18676661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21737749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Nov 12;9:536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Dec 24;9(6):1983-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25533339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Dec;133(4):1565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14563928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4047-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Sep;224(4):801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16625397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2009 Feb;9(1):81-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18633655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3918-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20139304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5427-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Dakota du Nord</li>
<li>Missouri (État)</li>
<li>Oregon</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Howe, Glenn T" sort="Howe, Glenn T" uniqKey="Howe G" first="Glenn T" last="Howe">Glenn T. Howe</name>
</region>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
<name sortKey="Horvath, David P" sort="Horvath, David P" uniqKey="Horvath D" first="David P" last="Horvath">David P. Horvath</name>
<name sortKey="Mockler, Todd C" sort="Mockler, Todd C" uniqKey="Mockler T" first="Todd C" last="Mockler">Todd C. Mockler</name>
<name sortKey="Priest, Henry D" sort="Priest, Henry D" uniqKey="Priest H" first="Henry D" last="Priest">Henry D. Priest</name>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26734012
   |texte=   Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26734012" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020